NADH-quinone oxidoreductase: PSST subunit couples electron transfer from iron-sulfur cluster N2 to quinone
نویسندگان
چکیده
منابع مشابه
Quinone binding and reduction by respiratory complex I.
Complex I (NADH:ubiquinone oxidoreductase) has a central function in oxidative phosphorylation and hence for efficient ATP production in most prokaryotic and eukaryotic cells. This huge membrane protein complex transfers electrons from NADH to ubiquinone and couples this exergonic redox reaction to endergonic proton pumping across bioenergetic membranes. Although quinone reduction seems to be c...
متن کاملDirect assignment of EPR spectra to structurally defined iron-sulfur clusters in complex I by double electron-electron resonance.
In oxidative phosphorylation, complex I (NADH:quinone oxidoreductase) couples electron transfer to proton translocation across an energy-transducing membrane. Complex I contains a flavin mononucleotide to oxidize NADH, and an unusually long series of iron-sulfur (FeS) clusters, in several subunits, to transfer the electrons to quinone. Understanding coupled electron transfer in complex I requir...
متن کاملDisruption of iron-sulphur cluster N2 from NADH: ubiquinone oxidoreductase by site-directed mutagenesis.
We have cloned and inactivated, by repeat-induced point mutations, the nuclear gene encoding the 19.3 kDa subunit of complex I (EC 1.6.5.3) from Neurospora crassa, the homologue of the bovine PSST polypeptide. Mitochondria from mutant nuo19.3 lack the peripheral arm of complex I while its membrane arm accumulates. Transformation with wild-type cDNA rescues this phenotype and assembly of complex...
متن کاملTwo aspartic acid residues in the PSST-homologous NUKM subunit of complex I from Yarrowia lipolytica are essential for catalytic activity.
Mitochondrial proton-translocating NADH:ubiquinone oxidoreductase (complex I) couples the transfer of two electrons from NADH to ubiquinone to the translocation of four protons across the mitochondrial inner membrane. Subunit PSST is the most likely carrier of iron-sulfur cluster N2, which has been proposed to play a crucial role in ubiquinone reduction and proton pumping. To explore the functi...
متن کاملRegulation of the mechanism of Type-II NADH: Quinone oxidoreductase from S. aureus
Type-II NADH:quinone oxidoreductases (NDH-2s) are membrane proteins involved in respiratory chains and the only enzymes with NADH:quinone oxidoreductase activity expressed in Staphylococcus aureus (S. aureus), one of the most common causes of clinical infections. NDH-2s are members of the two-Dinucleotide Binding Domains Flavoprotein (tDBDF) superfamily, having a flavin adenine dinucleotide, FA...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 1999
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.96.7.4149